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Monodisperse model suitable to study the glass transition
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We study the properties of a monodisperse lattice glass model with a simple geometrical interpretation,
which reproduces many features of glass forming liquids, such as the cage effect, vanishing diffusivity, and the
presence of two time scales in relaxation functions. The model has a crystalline ground state at high density,
but has no tendency to crystallize when quenched, even at extremely low cooling rates, which makes it suitable
for the study of the glass transition. We study the model in mean field on random regular graphs, finding a
scenario analogous {@spin models.
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I. INTRODUCTION model is constituted by lattice glass variablgs=0,1 on a
lattice that interact via g-body potential, with 3=p=<z
When a liquid is cooled below the melting temperature+1, wherez is the coordination number of the lattice, with
avoiding crystallization, it enters a supercooled state. If théhe nearest neighbors. In order to reduce the tendency to
temperature is further decreased the liquid falls out of equicrystallize, the authors considered a mixture of two types of
librium and becomes a glass. As the system approaches t@rticles. The model has been further studieii@.
glassy state the motion of the molecules is slowed down, the [N this paper we consider a three-dimensional lattice gas
structural relaxation time quickly changes by several ordergnodel with a simple geometrical interpretatidii] and two-

of magnitude, and the system appears as a disordered solf@dy interactions. Since the model has no tendency to crys-
on the time scale of experimental observatiptis tallize, clear results on the high-density region are obtained
without the introduction of a mixture. Monte Carlo simula-

Several efforts have been put forward in order to under-. :
stand the dynamics and thermodynamics of supercooled Iicilons show that the model reproduces the behavior of glass

uids, and the glass transition. There are many valuable the orming liquids, and that its dynamics compare well, in many
ries based on free volunj@], cooperative rearrangements of

particles[3], inherent structures approag#,5], mode cou- relaxation, and can be fitted in the intermediate and long time

pling theory[6], and replica methof7]. _ regimes by the functional forms predicted by MCT. The ana-
In the supercooled state the dynamics is dominated by th@/tical solution of the model in mean field, on a random

“cage effect”: every particle is trapped in the cage formed regular graph, shows again a scenario analogoys-<pin

by the surrounding particles for a long time before escapingmgqels, with a 1-step replica symmetry breaking transition.

The above mentioned mode coupling thed4CT) gives a In Sec. Il we introduce the model. In Sec. Ill we present

quantitative description of the relaxation process of SUPeryonte Carlo simulations and compare the dynamical behav-
cooled liquids. The MCT predicts the existence of a temperajy, of the model with the predictions of MCT. The mean field
ture T, at which there is a dynamical arrest that arises fromya)ysis is presented in Sec. IV, while some conclusions are

the nonlinear interaction of density fluctuations. The relax-grawn in Sec. V. The Appendix gives details about the mean
ation time and the inverse diffusivity diverge as a power lawsio|q calculations.

whenT approached .. The hypothesis that the glass transi-
tion is the signature of a kinetically avoided static thermody-
namic transition(the “ideal glass transition) that would

take place at a temperatulg<Tj is still under investiga- The model is defined as follows. We partition the space in
tion. This scenario is now object of growing attention, be-regular cells, such that not more that one particle can have its
cause of the analogy with thespin glasq8], a mean field center of mass inside the cell. A coarse grained discrete in-
model with p-body interactions and quenched disorder,ternal degree of freedom, which can assume a finite number
which reproduces many features of glass forming liquids angy of states, describes the position and the orientation of a
has a static replica symmetry breaking transition. particle inside the cell. The interaction between nearest
Because th@-spin glass is physically so different from a neijghbors depends explicitly on the internal degree of free-

structural glass, in the Past years there have been differegbm. The model is therefore described by the following
attempts to devise a model for the glass transition physicallyyamiltonian

more appealing. In this line of research, Biroli and 2ded

have inFroduced a lattice glass mp@@] Fhat shows in three ' H:Z nin; ¢ (o ,Uj)—,uz ni, (1)
dimensions, by means of numerical simulations, a behavior {n i

typical of glass forming liquids. Moreover the mean field

solution on a random graph shows a scenario analogous tsheren;=0,1 whether theth cell is occupied by a particle
p-spin models, with one step replica symmetry breaking. Ther not, o;=1, ... g represents the internal position of the

respects, with the predictions of MCT. Particularly, the cor-
relation function of the density fluctuations displays two step

Il. MODEL
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FIG. 1. The model in two dimensions: the space is partitioned in  FIG. 2. Ground state of a two-dimensionak5 lattice, with
square cells, and each cells can be occupied by at most one partidensity 4/5.
in one of four positionglittle circles). A particle in a given position
(big. §haded circD;forbids the presence of another particle in the Il SIMULATIONS
positions colored in black.

We have simulated the system in three dimensions, by
means of Monte Carlo canonicéixed density and grand-
canonical(variable density dynamics. The grand-canonical
dynamics is given by the following algorithm.

) . - (1) Pick up a site at random. If the site is occupied by a

I.s it clear tha}t., by choosing a sufﬂmently Iarge_numkqer . particle, then:(a) Pick up a site at random between the six
of internal positions, and an opportune interaction matrix, o rest neighbor ones and the one occupied by the particle;

¢ij(oi,0;), one can approximate as closely as desired anyy, cnoose a random internal state) If doing so particles
model defined in the continuum, as, for example, a Lennardg, not overlap, move the particle in the new site with the

Jones liquid. On the other and, it is plausible that a fewheaw internal state.
number of internal states may be enough to catch the funda- otherwise, do nothing.
mental characteristics of dynamics and thermodynamics of (2) pick up a site at random. If the site is occupied by a

glass forming liquids. particle, destroy the particle with probability expg/T). If

Here, we study a particularly simple realization of thethe site is empty, choose a random internal state and, if doing
model described by Edq1). In two dimensions, we partition so particles do not overlap, create a new particle with the
the space in square cells, and subdivide each cell into fourhosen internal state.
internal positions. When a cell is occupied by a particle in a (3) Advance the time by N, whereN is the number of
given position, a hard-core repulsion forbids the presence diites.
another particle in some of the internal states of the neigh- In the canonical dynamics step 2 is missing.
boring cells(see Fig. 1. Therefore in this casg=4, and the The nice feature of this model is that it has no tendency to
interactione;; (o , o) is zero if the positionsr; andoj are  crystallize. A compression experiment on a system of size
“compatible,” infinite otherwise. This choice can be inter- 28% is shown in Fig. 3. A grand-canonical dynamics is per-
preted as a coarse grained version of a hard sphere system.fimed, and temperature is slowly decreased, starting from
three dimensions, one partitions the space into cubic cellsome high value. The results are shown as open circles in
and considers six internal positions instead of four. Fig. 3 for various cooling rates.

For every spatial dimensio the model has a crystalline The final high-density state is strongly dependent from the
ground state on lattices with sides multiples of21 lattice ~ cooling rate, as observed in glass forming liquids. On the
spacings, with density ®&(2d+1), where density means other hand, no tendency to crystallization is observed, even
fraction of occupied cells. For example, on a cubic latticeat the slowest cooling ratel(T=—10"") no transition to
with periodic boundary conditions, the ground state can behe crystalline state is observed. We have also prepared the
found as follows: consider the cell with coordinatesy,z),  system in the crystalline states at very low temperature, and
and evaluate the numbexr=(x+2y+3zmod7): if a=0 heated it up slowly(diamonds in Fig. 8 The ordered state
leave the cell empty; id=1,2,3 put a particle in the negative becomes unstable @t=0.15Qu, where the system falls into
X, y, or zdirection, respectively; ii=4,5,6 put a particle in the liquid phase.
the positivez, y, or x direction, respectively. In Fig. 2 it is To avoid crystallization most continuum and discrete
shown the ground state of a two-dimensionat 5 lattice,  simulations of glass forming liquids consider mixtures of
with density 4/5. particles with different propertie®r introduce in the Hamil-

particle, and¢;j(o;,o;) is the interaction energy between
two particles in cells andj, with internal positionsr; and
oj, andu is the chemical potential.
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the cell. The dynamical nonlinear susceptibility associated

FIG. 3. Specifi | i densit functi f tem- . o .
pecific volumdinverse densityas a function of tem with the self-overlap parameter, which is defined as

perature, for a three-dimensional system of siz& Z8rcles: the
system is cooled starting from high temperature for cooling rates _ 2\ _ 2

. x(1)=N[(q(t) q(t)<], )
(from top to bottom T/T=—10*,—10"°,—10 ’. Diamonds: the < )~am)

system is heated starting from the crystalline ground state, witr?S shown in Fig. 6. The susceptibility displays a maximum
heating rateT/T=10". x(t*) at time t*. The growth of y(t*) with the density

) ) implies that the dynamics becomes more heterogeneous at
tonian somead hocterms[12]). This makes the models more pigher density. We are able to fig(t*) as a function of
complicated, and introduces in the relaxation processes tWSensity with a power law g’ —p)~7', in which p.=0.839
time scales that entangle with those associated with the cage | ' =1.9 (inset of Fig GC P ' Pe="

effect. This is why the absence of crystallization makes this We h died th it f th lation f
model suitable for the study of the glass transition. _ve have stu € the s€ -part o .t e autocorrelation func-
) - . .. tion of the density fluctuations, defined as

After having equilibrated the system at a certain density,
we switch to canonical dynamics. These simulations are per- 1 _ ) ,
formed on lattices of size £5 The mean square displace- S(=5 >, ekt +y=ntHn) 4
ment of the particles is shown in Fig. 4. This is defined :
taking into account also the position of a particle inside a cell ) - ) ) ) )
giving to each internal position a shift of 1/4 of a lattice Whereri(t) is the position of theith particle in units of

spacing with respect to the center of the cell. In Fig. 5 welattice constants, considering as before the internal positions
plot the self-overlap, defined as as shifted of 1/4 of a lattice spacing with respect to the center

of the cell. Due to the discreteness and periodicity of the
1 lattice, the wave vector must have the formk
(at)=y Z (" +Om) oyt +0)-0i(t"), (20 =(27/L)(n,,n,,n,), wheren,, n,, andn, are integers be-
tween O andL/2. We have chosen wave vectds
=(,0,0), which corresponds to a wavelength equal to two
Aattice spacings, because for thhkt density fluctuations
é|pk(t’)|2> are largest, wherp,(t’) is the Fourier transform

where the average - - ) is done over the timé¢’, and o;(t)
are unit length vectors, pointing in one of the six coordinate
directions, representing the position of the particles insid
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FIG. 4. Mean square displacemert?(t)) in a three- FIG. 6. Nonlinear susceptibility for density 0.78, 0.80, 0.805,
dimensional system of size 15or densitiesp=0.6, 0.7, 0.75, 0.810, 0.820. Inset: the maximuy(t*) as a function of density.
0.76, 0.78, 0.79, 0.8, 0.805, 0.81, 0.815, 0.82. The fitting function is a power law(t*)=0.003(0.839- p) ~*°.
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FIG. 7. Relaxation functions for the self-part of the density-
density fluctuations fok= (,0,0) and the same densities of Fig. 4.
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FIG. 9. Time-density superposition principle for the correlation
function, for densitiep = 0.75, 0.76, 0.78, 0.79, 0.8, 0.805, 0.81,
0.815, 0.82. The fitting curve is a stretched exponentiekg

of the density. This means that this mode is the most impor--(t/7)#] with 8=0.86. Inset: fit of relaxation functions with the
tant in the dynamics of the system. The results for variougprediction of the mode coupling theof\Eq. (5)]. Densities p

densities are plotted in Fig. 7.

=0.76, 0.78, 0.79, 0.8, 0.805, 0.81, 0.815, 0.82.

The mean square displacement, the relaxation of the

density-density fluctuations, and the relaxation of the overlap

d)(t):f—’_hcfrgt(t/t(r)v (5)

show that the model reproduces the cage effect and the pres-
ence of two characteristic time scales in the relaxation prowith f (nonergodicity parametgrand h constants,c,

cess. The first one is associated to the vibration of a particl

e|o|*? t,=|o| Y2, and the separation parameter is

inside the cage formed by the surrounding particles, andegative in the liquid phase and positive in the glassy one.
gives rise to the first decay of the relaxation functions. TheThe transition can be driven by temperature, in which case
second time scale is associated to the global relaxation of thexT.—T, or by density, in which casexp—p.. At short
system, and gives rise to the final decay of the correlationimes, t,<t<t,, the universal function has the asymptotic

functions.

behavior g.. (t/t,) ~ (t/t,) "2 At longer times,t, <t<t,,

We have then studied the behavior of the diffusion coefone has a functional form in the glassy phage(t/t,)

ficient and of the inverse relaxation tinjeig. 8. They van-
ish at the same density.=0.844, with power laws d.
—p)? with the same exponent=3.53. The critical density
pc is compatible, within errors, with the densipy, at which
the dynamical nonlinear susceptibility diverges.

Comparison with Mode Coupling Theory

~(1—X)2, and a distinct one in the liquid phasg, (t/t,)

~ —B(t/t,)P. The parametera, b are related as follows:
I*(1-a) T*1+b)
[(1-2a) T[(1+2b) ™

(6)

where\ is the so-called exponent parameter.
We have tried to fit the intermediate time scale of the

We have compared the relaxation functions of the modefqg|ation functions with the functional form of E€F), as

with the predictions of MCT. The theory predicts that, near
the transition, the intermediate time behavidp<€t<t,,
with the microscopic timé, and the relaxation timeg,) of
the relaxation functions can be fitted by

FIG. 8. Diffusion coefficientD (circle) and inverse relaxation
time 1/r (diamond$ as a function ofp—p.. The values of the
densities are the same used in Fig. 4, while-0.844. The straight
lines are power laws:(p—p¢)? with y=3.53.

shown in Fig. 9(insed. In agreement with the prediction of
MCT the value of the exponent paramelgr(and therefore
of the exponents, b) is constant within errors. The values
extracted from the fit arex=0.584+0.005, a=0.370
+0.002,b=0.84+0.01.

According to MCT, the exponeny that characterizes the
divergence of the relaxation times and of the inverse diffu-
sivity should be the same, and equal to

1 1

Y= 2a" 2p ™
As we said above, we found indeed that relaxation times and
inverse diffusivity diverge with the same exponent
=3.53. On the other hand, using the valuesaaind b ob-
tained by the fits of the intermediate part of the relaxation
functions, and using Ed7), one findsy=1.94+0.02. This
part of the prediction is therefore not verified.

For what concerns the long time regimée>(,), the
theory predicts that in the liquid phase, that is, for tempera-
tureT>T, or densityp<p., the correlation functions decay
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; FIG. 11. Merging of the brancheg=1, ... k (here withk
FIG. 10. The model of a treelike graghere withk=3): each =3) onto the sitd: the “external” positions are those colored in
site is subdivided ifk+ 1 positions(little circles), and connected to  Plack, the others are the “internal” ones.

k+1 randomly chosen neighbors. A particle in a given positlug ) » )
shaded circlgforbids the presence of another particle in the posi-r€lations between the partition functions of the branch end-

tions colored in black. ing on sitei and the partition functions of the branches end-
ing on siteg

with a stretched exponential forns(t)«exg —(t/7,)?], the . k
exponent being temperaturéor density independent. This z0=11 zP+z8+z0), (8a)
prediction is called “time-temperature superposition prin- =1
ciple,” but applies as well for density driven transitions. K

In Fig. 9 we verify the prediction of MCT for densities Z((ai>)<t: e/mH (Zg)JrZi(rj])t), (8b)
between 0.75 and 0.81. In agreement with MCT the correla- j=1

tion functions collapse on the same stretched exponential .
when plotted versud 7, . In the present case the value of the 0
: “ () — oB (i) 4+ 7))y zM
exponent is3=0.86. Zin=e MZ/ H 2o+ Zim) Zo
j#l
k (l)
2% +z0

int

int

k
IV. MEAN FIELD ANALYSIS :eBMH (Zg)+2(i)
j=1

) (80

A. The random regular graph

In the past few years it came out that a special class of |t is convenient to introduce a couple of local cavity fields
treelike random graphs, the “random regular graph,” is suit-on each site, defined by the following relationg?"
able to study the thermodynamics of complex and disordered: 7()/7() " efai=(z() +71)/7{)  The recursion relations
systems in mean fiel®,13,14. The random regular graph is for the local fields for the fteration process are
defined as a random graph with fixed connectiity 1. In ) )
our case each site of the lattice is subdivide# #1l internal P 1+efN 1
position corresponding to the internal degree of freedom and efi=ef| I] +121 1+ebfn)’ (%3
k
(2% 1+ e

i=1 a;
each site is connected tot+ 1 sites randomly chosen. The “1l+e
hard-core interaction between nearest neighbor particles is 1+ ebh;
showed in Fig. 10. For large number of sitdssuch a graph eﬁhi:eﬁu( 1T
locally looks like a portion of a Cayley tree, but it displays =1 1+eP?
loops of length of order I, whereN is the total number of
sites. Locally the problem is unfrustrated, but the presence dthile the free energy shift in the merging process is given by

(9b)

loops insures the existence of frustration which is a funda- K K
mentz_il char_actenstlc (_)f glassy systems. e—ﬁAFzzg)/H 28)= H (1+ePa)). (10)
This particular treelike structure allows us to compute all =1 =1

the thermodynamic quantiti€free energy, density, entropy,
so forth using an iterative method that, in the context of To evaluate the total free energy density we have to compute
disordered systems, has been called the cavity methsld  the free energy shifts due to a site and link addifi®8,14

and that in the liquid and in the crystalline phase reduces to

the simple Bethe-Peierls iterative method. Let us consider a K <

g - ' o e BAF Baj) + gB ph;
branch ending on a certain site connected tok sites | H (1+e™)+e “pzl ]];[p (1+ePM),
ef{1,...k}, and letz’, z{) . and z{!) be the partition (113
functions of the branch restricted to configurations in which )
the sitei is empty, occupied in the “external” position and e BAFI_q | gbary ghary ghthy), (11b

occupied in one of th& “internal” positions, respectively
(see Fig. 11, wher&=3). Now we can write the recursion The total free energy will be then given by
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FIG. 12. Specific voluméinverse densityas a functio_n of the 0.05 0.1 T/
temperature, on the random regular graph with5. Solid line: 2

replica symmetric liquid phase; broken line: crystalline phase; open FIG. 13. Entropy per site as a function of the temperature, on

circles: glassy phase in the 1-step RSB approximation. Arrows markhe random regular graph with=5. The notation is the same as in

the various temperatures cited in the text. Fig. 12. Inset: parameten as a function of the temperature. The
line is a guide for the eye.

k+1
F=AF(1)—TAF(2). (12)

from site to site, but are different in different sit@sreak-
down of translational invariangeThis is done via the intro-
duction of three sublattices and three different couples of
local fields. The merging is done taking into account the
The replica symmetric solutiofRS) of the problem cor-  structure of the crystalline phase, described in Sec. Il. The
responds to the case in which there is only one pure state arsblution of the resulting equations appears discontinue at a
the local fields do not fluctuate from site to sitle;€h,a; spinodal pointT,. It becomes thermodynamically stable
=aVi). This homogeneous solution corresponds to the ligwhen the corresponding free energy crosses the liquid one, at
uid phase characterized by translational invariance. Thishe melting temperaturg,,. At that temperature we observe
phase is expected to be stable for high values of the tempera-first-order phase transition characterized by a spontaneous
ture T (or small values of the chemical potentja). breakdown of the translational invariance, accompanied by a
In this case the local fields andh are given by the fixed discontinuous change of the density and of the entropy per
point of Eq.(9a). The free energy can be easily computed bysite. Increasing the chemical potential the density in the crys-
Eq. (119. From the local fields we can also evaluate thetalline phase approaches quickly the maximum valke (
densityp: +1)/(k+2) and the entropy per site approaches quickly
S hik zero. Fork=5 we find the following values for the spinodal
_ e (k+1)(1+e™) (13 and the melting temperatureT;,=0.163% and T
(1+eP)F Ly ebi(k+1)(1+efMk =0.1444u. The corresponding specific volume and entropy
per site are shown as dashed lines in Figs. 12 and 13.

Finally, since the internal energy per lattice site of the
system is given bye=—up, we obtain the following ex-
pression for the entropy per lattice si®= — B(F + up).

B. The replica symmetric solution

p

C. Replica symmetry breaking at the one step level

As in the model studied by Biroli and Mard[9], the The liquid phase is metastable beldw,, describing a
entropy becomes negative for temperature below a certaisupercooled liquid. However, as we have seen, the predicted
value T,_,. A similar behavior is observed for eveky=1.  entropy per site becomes negative as the temperature is low-

This behavior indicates that the homogeneous solution is nared, so this solution does not describe well the low tempera-
appropriate to describe the high-density region. The key agure (high-density region. In this region a great number of
sumption of the RS approach is the absence of correlatiometastable glassy states appears, the system gets trapped in
between the various cavity sites or, equivalently, that theone of these states and falls out of equilibrium. The RS ap-
perturbation due to the variation of the local field on oneproach fails because it does not take into account the exis-
cavity site remains localized and do not propagate in théence of several local minima of the free enefgyre states
whole lattice. This assumption is based on the consideratiowe have then looked for a solution at the level of one-step
that the distance on the lattice between two generic sites ieplica symmetry breakinRSB) [13-17.
large for large N, and seems to work in the low-density re- In the high-density region many pure states exist and the
gion. It the high-density region it may fail because of thelocal fields fluctuate also on the single site. To describe this
packing of the system in some disordered state. situation we have to introduce a distribution probability
It is also possible to find a crystallineeplica symmetric  P;(a,h) defined as the probability that the fieldsandh; of
solution of the problem where the fields do not fluctuatethe sitei equala andh.

066111-6
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In principle one should determine the number of meta- a=(1-kKu, ...,0u,
stable states for a given value of the free energy of the sys-
tem. This function is called complexity, and the computation a if a<pu
of its most appropriate form is a hard problem. In our cavity hi= Op if a—p (16)
1, 1 -

method formulation we assume the existence of many pure

states but we do not consider the explicit form of the com- ¢ propapility distribution of the local fields is then the
plexity. Roughly speaking, the cavity method assumes SOME 1 of k+2 S function P(a h):2k+2p S(a—a,)8(h
properties about the correlations between two cavity sites_h ). The self consistency E‘fll,4) givers:risé td<+2ralge—
and about the complexit'y in a system I‘ofsite;,, and shows . Hrairc.equations for the weights of th&functionsp,. For

mitfhseitse eS are self-consistently reproduced in a system Wltevery value ofBmu we solve the equations for the coeffi-

: . cients. Finally we find that the maximum value of the free

Because of the absence of quenched disorder we expect

the glassy phase to be still translational invariant. Thereforé o 9y for k=5 is F=-0.826%, obtained for fmu

we work in the so called “factorized case” in which the Zze?(')ogf'ze?gn?eeﬁ mé'“r a‘;‘a?)elsgfsn:;ehgor'g e:Soof’om m?nStm%c()jé?
probability distribution of the local fields on the single site is P ' P e :

the same for all the sites of the lattices. Using the cavity )
method in the one-step replica symmetry broken ansatz we E. Glassy solution at temperatureT>0

obtain the following integral self-consistency equation for At temperaturél >0 we have solved Eq14) numerically
the probability distribution of the local fields with an iterative procedure and we have found a scenario
k identical to the one op-spin models and discontinuous spin
,P(a,h):CJ' H [dathI”P(aJ ,hj)]ﬁ(a—ai)5(h—hi) glasses' ) . o )
i=1 We have discretized the distributidf(a,h) over a do-
main of the plane &,h) using a fine grid spacinda=dh
= /1024, The starting distributiof’(a,h) is the one that
solves the equation ai=0 that we have previously de-
, X i k scribed. We have slowly increased the temperature, and for
functions ofa; andh; via the recursion relations of Eq98  g5ch value of the temperature we have applied iteratively Eq.
and (10, and the real parameten<[0,1] is the usual one- (14 yntil convergence. Before applying this procedure one
step RSB parameter. The details of this calculation will be st verify that the chosen domain covers the whole support
given in Sec. V. _ _ of the distributionP(a,h).
The total free energy is now given by In order to find the maximum of the free energy with
respect tom it is useful to evaluate explicitly the derivative
) dF[m]/dm[13]. For high values of the temperature we find
that P(a,h) = 6(a—a) 8(h—h), wherea andh are the val-
ues of the local fields in the liquid phase. Lowering the tem-
perature we find first a dynamical transition at a certain tem-
peratureTy, where a nontrivial solution of the 1-step RSB
equation appears, signaling the existence of many pure
(15) states. This solution becomes thermodynamically stable be-
low a static transition temperatuiie,, where the maximum
where AF®) and AF® depend ona; and h; via the Eq.  of the free energy as a function wfis atm=1. Fork="5 we
(113. The parametem is fixed by the maximization of the find that Tp=0.105« and T,=0.087«. The results fork
free energy with respect to it. This is justified in the replica=5 are shown in Figs. 12 and 13, and they are very similar
method sincem turns out to be the breakpoint in Parisi’s to those found for other lattice glass modg$s19,20. Fig.
order parameter function at the one-step RSB 1g¥8]. For 13 shows also the behavior of the parametess a function
a spin glass it has been rigorously proé@d] that in thek  of the temperature, which turns out to be very similar to the
—o limit F[m] is a lower bound to the correct free energy, one found for thep-spin model. As the complexitythat is
so it is natural to find the preferred value mfby the maxi-  the logarithm of the number of metastable statesnishes
mization of F[m]. below T, the finite entropy below the static temperature
It is interesting to note that the whole self-consistencymust be interpreted as an “intrastate” entropy, due to the
procedure of Eq(14) can be deduced in a variational formu- rattling of the particles inside the cages.
lation by the stability condition of the functional given in Eqg.
(15) with respect to changes @#(a,h). V. CONCLUSIONS

X exp(— BMAF), (14

where C is a normalization constang;, h;, and AF are

k+1
1 _
F[m]=—;a—m['”f I1 da,dn Pt hye #n

2
k+1
_T'”J j1:[lo|ajdhj P(a;,hj)e PmaFL

In conclusion, we have studied a lattice glass model with
two body interactions. Monte Carlo simulations in three di-

At T=0 Eq.(14) is easily solved. Indeed from EPa in  mensions shows that the model, despite the presence of a
the B— e limit we note that the local fields on each site cancrystalline state, has no tendency to crystallize. This feature
only assume the following finite set of values: allows the study of the supercooled regime without introduc-

D. Analytic solution at zero temperature

066111-7



PICA CIAMARRA et al. PHYSICAL REVIEW E 68, 066111 (2003

ing a mixture, as in many models of glass. The model has &ince we are interested only on the local minima with the
clear glassy behavior, and it is able to reproduce remarkablipwest free energy we can expand the exponential to the first
well the cage effect and the presence of two different timeorder inAF=AF /N
scales in the relaxation process.

A detailed analytical study in mean field on a random
regular graph is presented. In this case, we find the scenario P(a,h)=Cf d(AF)S(a,h,AF)exp(— BmAF), (A4)
typical of p-spin glasses, recently reproduced by other mod-
els of glass. Further investigation is required to understand

whether in finite dimensions the static transition observed in .
L where the parameten is
mean field is still present.
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We can now make the integration ov@fAF). The § func-
APPENDIX tion selects only the right value of the free energy shift given

In this section we report the details of the calculation of" Eq. (10
the self-consistency equation for the cavity method with the
1-step RSB ansatZl3,14. The high-density region is char- k
acterized by the existence of many pure states. The numberP(a,h)=Cf H [da; dh; P(a;,hj)]é(a—a;)s(h—h;)
of pure states for a given value of the free energy is given by =1

MF)=expX(F). (A1) X exp(— BmAF). (AB)

We assume that within a given pure statéhe local fields  \we have thus obtained the self-consistency @é).
ai" andh;* on different cavity sites are uncorrelated. There-  The first-order expansion means that the number of pure
fore the recursion Eq9a) continues to hold. However in this  states for a given value of the free energy is
case we have to take into account the number of pure states
at a given value of the free energy and the possibility of level
crossings. We also assui¢F) to be an extensive function. NMF)=exdm(F—F0], (A7)
Our aim is to find the self-consistency equation for the

probgblhty d.'sf[”b'”'t'on of the IOCQI f|e_|d§3_(a,h). Let us whereF,. is a reference free energy whose explicit value is
consider a site, connected tdk cavity sitesj. In each pure

statea the local fields and the free energy shift are Corre_completely irrelevant. This form of the density of states is

. . ' ; the same found in the 1-step RSB formulation, whare
lated, since they are both functions of the local fields in thee[o,l] is the usual 1-step RSB parameter. We finally con-

neighbor sites in the statgaj andhj* according to .Eqs(.ga) clude that our formulation is equivalent to the 1-step RSB
and (10). However the triplets & ,hi*,AF{") are indepen- .
dent variables taken from a certain probability distribution |, order to compute the free energy density we have to

that we will call S(a,h,AF). Because of the recursion rela- inq the average values of the free energy shifts due to links
tions, this probability distribution has to verify the following 5.4 sites addition

iteration relation:

k k+1 k+1
S(a,h,AF)zJ’ [ [da; dh; P(a;.hy]s@-a) e*ﬁmAF“):J I1 rda; dh, P(aj,hj)](l"[ (1+ePa)
i= i=1 j=1
X 8(h—h,)S(AF—AF)). (A2) k+1 m
+efr > ] (1+efM)]
In order to determine the probability distribution of the p=1i#p

local fields P(a,h), we make the integration over all the

possible free energy shifts. This leads to 2

e—ﬁmAF(”:f [T [da dh; P(a;,hy)](1+efa+ b

P(a,h)zf d(AF)S(a,h,AF)NM(Fy—AFy) =1
+eBhyt hz))m_ (A8)

Fn—AFy

— I

=J d(AF)S(a,h,AF)exr{NE(
We have then derived the expression for the free energy den-
(A3) sity in the 1-step RSB given in E@15).
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