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Monodisperse model suitable to study the glass transition

M. Pica Ciamarra, M. Tarzia, A. de Candia, and A. Coniglio
Dipartimento di Scienze Fisiche, Universita` di Napoli ‘‘Federico II’’ and INFM, Unità di Napoli, Complesso Universitario di Monte

Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
~Received 6 August 2003; published 23 December 2003!

We study the properties of a monodisperse lattice glass model with a simple geometrical interpretation,
which reproduces many features of glass forming liquids, such as the cage effect, vanishing diffusivity, and the
presence of two time scales in relaxation functions. The model has a crystalline ground state at high density,
but has no tendency to crystallize when quenched, even at extremely low cooling rates, which makes it suitable
for the study of the glass transition. We study the model in mean field on random regular graphs, finding a
scenario analogous top-spin models.
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I. INTRODUCTION

When a liquid is cooled below the melting temperatu
avoiding crystallization, it enters a supercooled state. If
temperature is further decreased the liquid falls out of eq
librium and becomes a glass. As the system approache
glassy state the motion of the molecules is slowed down,
structural relaxation time quickly changes by several ord
of magnitude, and the system appears as a disordered
on the time scale of experimental observations@1#.

Several efforts have been put forward in order to und
stand the dynamics and thermodynamics of supercooled
uids, and the glass transition. There are many valuable t
ries based on free volume@2#, cooperative rearrangements
particles@3#, inherent structures approach@4,5#, mode cou-
pling theory@6#, and replica method@7#.

In the supercooled state the dynamics is dominated by
‘‘cage effect’’: every particle is trapped in the cage form
by the surrounding particles for a long time before escap
The above mentioned mode coupling theory~MCT! gives a
quantitative description of the relaxation process of sup
cooled liquids. The MCT predicts the existence of a tempe
ture Tc at which there is a dynamical arrest that arises fr
the nonlinear interaction of density fluctuations. The rela
ation time and the inverse diffusivity diverge as a power l
whenT approachesTc . The hypothesis that the glass tran
tion is the signature of a kinetically avoided static thermod
namic transition~the ‘‘ideal glass transition’’! that would
take place at a temperatureTs,Tg is still under investiga-
tion. This scenario is now object of growing attention, b
cause of the analogy with thep-spin glass@8#, a mean field
model with p-body interactions and quenched disord
which reproduces many features of glass forming liquids
has a static replica symmetry breaking transition.

Because thep-spin glass is physically so different from
structural glass, in the Past years there have been diffe
attempts to devise a model for the glass transition physic
more appealing. In this line of research, Biroli and Me´zard
have introduced a lattice glass model@9# that shows in three
dimensions, by means of numerical simulations, a beha
typical of glass forming liquids. Moreover the mean fie
solution on a random graph shows a scenario analogou
p-spin models, with one step replica symmetry breaking. T
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model is constituted by lattice glass variablesni50,1 on a
lattice that interact via ap-body potential, with 3<p<z
11, wherez is the coordination number of the lattice, wit
the nearest neighbors. In order to reduce the tendenc
crystallize, the authors considered a mixture of two types
particles. The model has been further studied in@10#.

In this paper we consider a three-dimensional lattice
model with a simple geometrical interpretation@11# and two-
body interactions. Since the model has no tendency to c
tallize, clear results on the high-density region are obtain
without the introduction of a mixture. Monte Carlo simula
tions show that the model reproduces the behavior of g
forming liquids, and that its dynamics compare well, in ma
respects, with the predictions of MCT. Particularly, the c
relation function of the density fluctuations displays two st
relaxation, and can be fitted in the intermediate and long t
regimes by the functional forms predicted by MCT. The an
lytical solution of the model in mean field, on a rando
regular graph, shows again a scenario analogous top-spin
models, with a 1-step replica symmetry breaking transitio

In Sec. II we introduce the model. In Sec. III we prese
Monte Carlo simulations and compare the dynamical beh
ior of the model with the predictions of MCT. The mean fie
analysis is presented in Sec. IV, while some conclusions
drawn in Sec. V. The Appendix gives details about the me
field calculations.

II. MODEL

The model is defined as follows. We partition the space
regular cells, such that not more that one particle can hav
center of mass inside the cell. A coarse grained discrete
ternal degree of freedom, which can assume a finite num
q of states, describes the position and the orientation o
particle inside the cell. The interaction between near
neighbors depends explicitly on the internal degree of fr
dom. The model is therefore described by the followi
Hamiltonian

H5(̂
i j &

ninjf i j ~s i ,s j !2m(
i

ni , ~1!

whereni50,1 whether thei th cell is occupied by a particle
or not, s i51, . . . ,q represents the internal position of th
©2003 The American Physical Society11-1
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particle, andf i j (s i ,s j ) is the interaction energy betwee
two particles in cellsi and j, with internal positionss i and
s j , andm is the chemical potential.

Is it clear that, by choosing a sufficiently large numbeq
of internal positions, and an opportune interaction ma
f i j (s i ,s j ), one can approximate as closely as desired
model defined in the continuum, as, for example, a Lenna
Jones liquid. On the other and, it is plausible that a f
number of internal states may be enough to catch the fun
mental characteristics of dynamics and thermodynamics
glass forming liquids.

Here, we study a particularly simple realization of t
model described by Eq.~1!. In two dimensions, we partition
the space in square cells, and subdivide each cell into
internal positions. When a cell is occupied by a particle i
given position, a hard-core repulsion forbids the presenc
another particle in some of the internal states of the ne
boring cells~see Fig. 1!. Therefore in this caseq54, and the
interactionf i j (s i ,s j ) is zero if the positionss i ands j are
‘‘compatible,’’ infinite otherwise. This choice can be inte
preted as a coarse grained version of a hard sphere syste
three dimensions, one partitions the space into cubic c
and considers six internal positions instead of four.

For every spatial dimensiond, the model has a crystallin
ground state on lattices with sides multiples of 2d11 lattice
spacings, with density 2d/(2d11), where density mean
fraction of occupied cells. For example, on a cubic latt
with periodic boundary conditions, the ground state can
found as follows: consider the cell with coordinates (x,y,z),
and evaluate the numbera5(x12y13zmod7): if a50
leave the cell empty; ifa51,2,3 put a particle in the negativ
x, y, or z direction, respectively; ifa54,5,6 put a particle in
the positivez, y, or x direction, respectively. In Fig. 2 it is
shown the ground state of a two-dimensional 535 lattice,
with density 4/5.

FIG. 1. The model in two dimensions: the space is partitioned
square cells, and each cells can be occupied by at most one pa
in one of four positions~little circles!. A particle in a given position
~big shaded circle! forbids the presence of another particle in t
positions colored in black.
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III. SIMULATIONS

We have simulated the system in three dimensions,
means of Monte Carlo canonical~fixed density! and grand-
canonical~variable density! dynamics. The grand-canonica
dynamics is given by the following algorithm.

~1! Pick up a site at random. If the site is occupied by
particle, then:~a! Pick up a site at random between the s
nearest neighbor ones and the one occupied by the par
~b! Choose a random internal state;~c! If doing so particles
do not overlap, move the particle in the new site with t
new internal state.

Otherwise, do nothing.
~2! Pick up a site at random. If the site is occupied by

particle, destroy the particle with probability exp(2m/T). If
the site is empty, choose a random internal state and, if do
so particles do not overlap, create a new particle with
chosen internal state.

~3! Advance the time by 1/N, whereN is the number of
sites.

In the canonical dynamics step 2 is missing.
The nice feature of this model is that it has no tendency

crystallize. A compression experiment on a system of s
283 is shown in Fig. 3. A grand-canonical dynamics is pe
formed, and temperature is slowly decreased, starting f
some high value. The results are shown as open circle
Fig. 3 for various cooling rates.

The final high-density state is strongly dependent from
cooling rate, as observed in glass forming liquids. On
other hand, no tendency to crystallization is observed, e
at the slowest cooling rate (Ṫ/T521027) no transition to
the crystalline state is observed. We have also prepared
system in the crystalline states at very low temperature,
heated it up slowly~diamonds in Fig. 3!. The ordered state
becomes unstable atT.0.150m, where the system falls into
the liquid phase.

To avoid crystallization most continuum and discre
simulations of glass forming liquids consider mixtures
particles with different properties~or introduce in the Hamil-

n
icle

FIG. 2. Ground state of a two-dimensional 535 lattice, with
density 4/5.
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MONODISPERSE MODEL SUITABLE TO STUDY THE . . . PHYSICAL REVIEW E 68, 066111 ~2003!
tonian somead hocterms@12#!. This makes the models mor
complicated, and introduces in the relaxation processes
time scales that entangle with those associated with the
effect. This is why the absence of crystallization makes t
model suitable for the study of the glass transition.

After having equilibrated the system at a certain dens
we switch to canonical dynamics. These simulations are
formed on lattices of size 153. The mean square displace
ment of the particles is shown in Fig. 4. This is defin
taking into account also the position of a particle inside a c
giving to each internal position a shift of 1/4 of a lattic
spacing with respect to the center of the cell. In Fig. 5
plot the self-overlap, defined as

^q~ t !&5
1

N (
i

^ni~ t81t !ni~ t8!si~ t81t !•si~ t8!&, ~2!

where the averagê•••& is done over the timet8, andsi(t)
are unit length vectors, pointing in one of the six coordina
directions, representing the position of the particles ins

FIG. 3. Specific volume~inverse density! as a function of tem-
perature, for a three-dimensional system of size 283. Circles: the
system is cooled starting from high temperature for cooling ra

~from top to bottom! Ṫ/T521024,21025,21027. Diamonds: the
system is heated starting from the crystalline ground state, w

heating rateṪ/T5107.

FIG. 4. Mean square displacement^r 2(t)& in a three-
dimensional system of size 153 for densitiesr50.6, 0.7, 0.75,
0.76, 0.78, 0.79, 0.8, 0.805, 0.81, 0.815, 0.82.
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the cell. The dynamical nonlinear susceptibility associa
with the self-overlap parameter, which is defined as

x~ t !5N@^q~ t !2&2^q~ t !&2#, ~3!

is shown in Fig. 6. The susceptibility displays a maximu
x(t* ) at time t* . The growth ofx(t* ) with the density
implies that the dynamics becomes more heterogeneou
higher density. We are able to fitx(t* ) as a function of
density with a power law (rc82r)2g8, in which rc850.839
andg851.9 ~inset of Fig. 6!.

We have studied the self-part of the autocorrelation fu
tion of the density fluctuations, defined as

Sk~ t !5
1

N K (
i

eik•[ r i (t81t)2r i (t8)] L , ~4!

where r i(t) is the position of thei th particle in units of
lattice constants, considering as before the internal posit
as shifted of 1/4 of a lattice spacing with respect to the cen
of the cell. Due to the discreteness and periodicity of
lattice, the wave vector must have the formk
5(2p/L)(nx ,ny ,nz), wherenx , ny , andnz are integers be-
tween 0 and L/2. We have chosen wave vectork
5(p,0,0), which corresponds to a wavelength equal to t
lattice spacings, because for thatk density fluctuations
^urk(t8)u2& are largest, whererk(t8) is the Fourier transform

s

th

FIG. 5. Self-overlap̂ q(t)& as a function of time for the sam
density of Fig. 4.

FIG. 6. Nonlinear susceptibility for density 0.78, 0.80, 0.80
0.810, 0.820. Inset: the maximumx(t* ) as a function of density.
The fitting function is a power lawx(t* )50.003(0.8392r)21.9.
1-3
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of the density. This means that this mode is the most imp
tant in the dynamics of the system. The results for vario
densities are plotted in Fig. 7.

The mean square displacement, the relaxation of
density-density fluctuations, and the relaxation of the over
show that the model reproduces the cage effect and the p
ence of two characteristic time scales in the relaxation p
cess. The first one is associated to the vibration of a par
inside the cage formed by the surrounding particles,
gives rise to the first decay of the relaxation functions. T
second time scale is associated to the global relaxation o
system, and gives rise to the final decay of the correla
functions.

We have then studied the behavior of the diffusion co
ficient and of the inverse relaxation time~Fig. 8!. They van-
ish at the same densityrc50.844, with power laws (rc
2r)g with the same exponentg53.53. The critical density
rc is compatible, within errors, with the densityrc8 at which
the dynamical nonlinear susceptibility diverges.

Comparison with Mode Coupling Theory

We have compared the relaxation functions of the mo
with the predictions of MCT. The theory predicts that, ne
the transition, the intermediate time behavior (t0!t!ta ,
with the microscopic timet0 and the relaxation timeta) of
the relaxation functions can be fitted by

FIG. 7. Relaxation functions for the self-part of the densi
density fluctuations fork5(p,0,0) and the same densities of Fig.

FIG. 8. Diffusion coefficientD ~circle! and inverse relaxation
time 1/t ~diamonds! as a function ofr2rc . The values of the
densities are the same used in Fig. 4, whilerc50.844. The straight
lines are power laws}(r2rc)

g with g53.53.
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f~ t !5 f 1hcsg6~ t/ts!, ~5!

with f ~nonergodicity parameter! and h constants, cs

5usu1/2, ts5usu21/2a, and the separation parameters is
negative in the liquid phase and positive in the glassy o
The transition can be driven by temperature, in which c
s}Tc2T, or by density, in which cases}r2rc . At short
times, t0!t!ts , the universal function has the asymptot
behavior g6(t/ts);(t/ts)2a. At longer times,ts!t!ta ,
one has a functional form in the glassy phase,g1(t/ts)
;(12l)2, and a distinct one in the liquid phase,g2(t/ts)
;2B(t/ts)b. The parametersa, b are related as follows:

G2~12a!

G~122a!
5

G2~11b!

G~112b!
5l, ~6!

wherel is the so-called exponent parameter.
We have tried to fit the intermediate time scale of t

correlation functions with the functional form of Eq.~5!, as
shown in Fig. 9~inset!. In agreement with the prediction o
MCT the value of the exponent parameterl, ~and therefore
of the exponentsa, b) is constant within errors. The value
extracted from the fit are:l50.58460.005, a50.370
60.002,b50.8460.01.

According to MCT, the exponentg that characterizes the
divergence of the relaxation times and of the inverse dif
sivity should be the same, and equal to

g5
1

2a
1

1

2b
. ~7!

As we said above, we found indeed that relaxation times
inverse diffusivity diverge with the same exponentg
53.53. On the other hand, using the values ofa andb ob-
tained by the fits of the intermediate part of the relaxat
functions, and using Eq.~7!, one findsg51.9460.02. This
part of the prediction is therefore not verified.

For what concerns the long time regime (t.ta), the
theory predicts that in the liquid phase, that is, for tempe
tureT.Tc or densityr,rc , the correlation functions deca

FIG. 9. Time-density superposition principle for the correlati
function, for densitiesr 5 0.75, 0.76, 0.78, 0.79, 0.8, 0.805, 0.8
0.815, 0.82. The fitting curve is a stretched exponential}exp@
2(t/t)b# with b50.86. Inset: fit of relaxation functions with th
prediction of the mode coupling theory@Eq. ~5!#. Densities r
50.76, 0.78, 0.79, 0.8, 0.805, 0.81, 0.815, 0.82.
1-4
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with a stretched exponential form,c(t)}exp@2(t/ta)b#, the
exponentb being temperature~or density! independent. This
prediction is called ‘‘time-temperature superposition pr
ciple,’’ but applies as well for density driven transitions.

In Fig. 9 we verify the prediction of MCT for densitie
between 0.75 and 0.81. In agreement with MCT the corre
tion functions collapse on the same stretched expone
when plotted versust/ta . In the present case the value of th
exponent isb50.86.

IV. MEAN FIELD ANALYSIS

A. The random regular graph

In the past few years it came out that a special class
treelike random graphs, the ‘‘random regular graph,’’ is su
able to study the thermodynamics of complex and disorde
systems in mean field@9,13,14#. The random regular graph i
defined as a random graph with fixed connectivityk11. In
our case each site of the lattice is subdivided ink11 internal
position corresponding to the internal degree of freedom
each site is connected tok11 sites randomly chosen. Th
hard-core interaction between nearest neighbor particle
showed in Fig. 10. For large number of sitesN, such a graph
locally looks like a portion of a Cayley tree, but it display
loops of length of order lnN, whereN is the total number of
sites. Locally the problem is unfrustrated, but the presenc
loops insures the existence of frustration which is a fun
mental characteristic of glassy systems.

This particular treelike structure allows us to compute
the thermodynamic quantities~free energy, density, entropy
so forth! using an iterative method that, in the context
disordered systems, has been called the cavity method@15#
and that in the liquid and in the crystalline phase reduce
the simple Bethe-Peierls iterative method. Let us consid
branch ending on a certain sitei, connected tok sites j
P$1, . . . ,k%, and let Z0

( i ) , Zext
( i ) , and Zint

( i ) be the partition
functions of the branch restricted to configurations in wh
the sitei is empty, occupied in the ‘‘external’’ position an
occupied in one of thek ‘‘internal’’ positions, respectively
~see Fig. 11, wherek53). Now we can write the recursio

FIG. 10. The model of a treelike graph~here withk53): each
site is subdivided ink11 positions~little circles!, and connected to
k11 randomly chosen neighbors. A particle in a given position~big
shaded circle! forbids the presence of another particle in the po
tions colored in black.
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relations between the partition functions of the branch e
ing on sitei and the partition functions of the branches en
ing on sitesj

Z0
( i )5)

j 51

k

~Z0
( j )1Zext

( j ) 1Zint
( j ) !, ~8a!

Zext
( i ) 5ebm)

j 51

k

~Z0
( j )1Zint

( j ) !, ~8b!

Zint
( i ) 5ebm(

l 51

k S)
j Þ l

~Z0
( j )1Zint

( j ) !Z0
( l )D

5ebm)
j 51

k

~Z0
( j )1Zint

( j ) !S (
l 51

k Z0
( l )

Z0
( l )1Zint

( l ) D . ~8c!

It is convenient to introduce a couple of local cavity fiel
on each site, defined by the following relations:ebhi

5Zint
( i ) /Z0

( i ) , ebai5(Zext
( i ) 1Zint

( i ) )/Z0
( i ) . The recursion relations

for the local fields for the iteration process are

ebai5ebmS )
j 51

k
11ebhj

11ebaj
D S 11(

j 51

k
1

11ebhj
D , ~9a!

ebhi5ebmS )
j 51

k
11ebhj

11ebaj
D S (

j 51

k
1

11ebhj
D , ~9b!

while the free energy shift in the merging process is given

e2bDF5Z0
( i )/)

j 51

k

Z0
( j )5)

j 51

k

~11ebaj !. ~10!

To evaluate the total free energy density we have to comp
the free energy shifts due to a site and link addition@13,14#

e2bDF(1)
5)

j 51

k11

~11ebaj !1ebm (
p51

k11

)
j Þp

~11ebhj !,

~11a!

e2bDF(2)
511eba11eba21eb(h11h2). ~11b!

The total free energy will be then given by

-

FIG. 11. Merging of the branchesj 51, . . . ,k ~here with k
53) onto the sitei: the ‘‘external’’ positions are those colored i
black, the others are the ‘‘internal’’ ones.
1-5
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F5DF (1)2
k11

2
DF (2). ~12!

B. The replica symmetric solution

The replica symmetric solution~RS! of the problem cor-
responds to the case in which there is only one pure state
the local fields do not fluctuate from site to site (hi5h,ai
5a; i ). This homogeneous solution corresponds to the
uid phase characterized by translational invariance. T
phase is expected to be stable for high values of the temp
ture T ~or small values of the chemical potentialm).

In this case the local fieldsa andh are given by the fixed
point of Eq.~9a!. The free energy can be easily computed
Eq. ~11a!. From the local fields we can also evaluate t
densityr:

r5
ebm~k11!~11ebh!k

~11eba!k111ebm~k11!~11ebh!k
. ~13!

Finally, since the internal energy per lattice site of t
system is given byE52mr, we obtain the following ex-
pression for the entropy per lattice site:S52b(F1mr).

As in the model studied by Biroli and Me´zard @9#, the
entropy becomes negative for temperature below a cer
valueTs50. A similar behavior is observed for everyk.1.
This behavior indicates that the homogeneous solution is
appropriate to describe the high-density region. The key
sumption of the RS approach is the absence of correla
between the various cavity sites or, equivalently, that
perturbation due to the variation of the local field on o
cavity site remains localized and do not propagate in
whole lattice. This assumption is based on the considera
that the distance on the lattice between two generic site
large for large N, and seems to work in the low-density
gion. It the high-density region it may fail because of t
packing of the system in some disordered state.

It is also possible to find a crystalline~replica symmetric!
solution of the problem where the fields do not fluctua

FIG. 12. Specific volume~inverse density! as a function of the
temperature, on the random regular graph withk55. Solid line:
replica symmetric liquid phase; broken line: crystalline phase; o
circles: glassy phase in the 1-step RSB approximation. Arrows m
the various temperatures cited in the text.
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from site to site, but are different in different sites~break-
down of translational invariance!. This is done via the intro-
duction of three sublattices and three different couples
local fields. The merging is done taking into account t
structure of the crystalline phase, described in Sec. II. T
solution of the resulting equations appears discontinue
spinodal pointTsp . It becomes thermodynamically stab
when the corresponding free energy crosses the liquid on
the melting temperatureTm . At that temperature we observ
a first-order phase transition characterized by a spontan
breakdown of the translational invariance, accompanied b
discontinuous change of the density and of the entropy
site. Increasing the chemical potential the density in the cr
talline phase approaches quickly the maximum valuek
11)/(k12) and the entropy per site approaches quic
zero. Fork55 we find the following values for the spinoda
and the melting temperature:Tsp50.1633m and Tm
50.1444m. The corresponding specific volume and entro
per site are shown as dashed lines in Figs. 12 and 13.

C. Replica symmetry breaking at the one step level

The liquid phase is metastable belowTm , describing a
supercooled liquid. However, as we have seen, the predi
entropy per site becomes negative as the temperature is
ered, so this solution does not describe well the low tempe
ture ~high-density! region. In this region a great number o
metastable glassy states appears, the system gets trapp
one of these states and falls out of equilibrium. The RS
proach fails because it does not take into account the e
tence of several local minima of the free energy~pure states!.
We have then looked for a solution at the level of one-s
replica symmetry breaking~RSB! @13–17#.

In the high-density region many pure states exist and
local fields fluctuate also on the single site. To describe
situation we have to introduce a distribution probabil
Pi(a,h) defined as the probability that the fieldsai andhi of
the sitei equala andh.

n
rk

FIG. 13. Entropy per site as a function of the temperature,
the random regular graph withk55. The notation is the same as i
Fig. 12. Inset: parameterm as a function of the temperature. Th
line is a guide for the eye.
1-6



ta
sy
ion
ity
u
m
m

ite

w

p
o
e
is
it
w

fo

b

ca
’s

y

c
u-
q.

an

e

-
ee

ario
in

-
for

Eq.
ne

port

th
e
d

m-
m-
B
ure
be-

ilar

he

re
the

ith
di-
of a

ture
uc-
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In principle one should determine the number of me
stable states for a given value of the free energy of the
tem. This function is called complexity, and the computat
of its most appropriate form is a hard problem. In our cav
method formulation we assume the existence of many p
states but we do not consider the explicit form of the co
plexity. Roughly speaking, the cavity method assumes so
properties about the correlations between two cavity s
and about the complexity in a system ofN sites, and shows
that these are self-consistently reproduced in a system
N11 sites.

Because of the absence of quenched disorder we ex
the glassy phase to be still translational invariant. Theref
we work in the so called ‘‘factorized case’’ in which th
probability distribution of the local fields on the single site
the same for all the sites of the lattices. Using the cav
method in the one-step replica symmetry broken ansatz
obtain the following integral self-consistency equation
the probability distribution of the local fields

P~a,h!5CE )
j 51

k

@dajdhjP~aj ,hj !#d~a2ai !d~h2hi !

3exp~2bmDF !, ~14!

where C is a normalization constant,ai , hi , and DF are
functions ofaj andhj via the recursion relations of Eqs.~9a!
and ~10!, and the real parametermP@0,1# is the usual one-
step RSB parameter. The details of this calculation will
given in Sec. V.

The total free energy is now given by

F@m#52
1

bm H lnE )
j 51

k11

daj dhj P~aj ,hj !e
2bmDF(1)

2
k11

2
lnE )

j 51

2

daj dhj P~aj ,hj !e
2bmDF(2)J ,

~15!

where DF (1) and DF (2) depend onaj and hj via the Eq.
~11a!. The parameterm is fixed by the maximization of the
free energy with respect to it. This is justified in the repli
method sincem turns out to be the breakpoint in Parisi
order parameter function at the one-step RSB level@15#. For
a spin glass it has been rigorously proved@18# that in thek
→` limit F@m# is a lower bound to the correct free energ
so it is natural to find the preferred value ofm by the maxi-
mization ofF@m#.

It is interesting to note that the whole self-consisten
procedure of Eq.~14! can be deduced in a variational form
lation by the stability condition of the functional given in E
~15! with respect to changes ofP(a,h).

D. Analytic solution at zero temperature

At T50 Eq.~14! is easily solved. Indeed from Eq.~9a! in
theb→` limit we note that the local fields on each site c
only assume the following finite set of values:
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ai5~12k!m, . . . ,0,m,

hi5H ai if ai,m

0,m if ai5m.
~16!

The probability distribution of the local fields is then th
sum of k12 d function P(a,h)5( r 51

k12prd(a2ar)d(h
2hr). The self consistency Eq.~14! gives rise tok12 alge-
braic equations for the weights of thed functions pr . For
every value ofbmm we solve the equations for the coeffi
cients. Finally we find that the maximum value of the fr
energy for k55 is F520.8265m, obtained for bmm
58.078. Sincebmm stays finite forb→`, m must go to
zero at zero temperature, as it happens for thep-spin model.

E. Glassy solution at temperatureTÌ0

At temperatureT.0 we have solved Eq.~14! numerically
with an iterative procedure and we have found a scen
identical to the one ofp-spin models and discontinuous sp
glasses.

We have discretized the distributionP(a,h) over a do-
main of the plane (a,h) using a fine grid spacingda5dh
5m/1024. The starting distributionP(a,h) is the one that
solves the equation atT50 that we have previously de
scribed. We have slowly increased the temperature, and
each value of the temperature we have applied iteratively
~14! until convergence. Before applying this procedure o
must verify that the chosen domain covers the whole sup
of the distributionP(a,h).

In order to find the maximum of the free energy wi
respect tom it is useful to evaluate explicitly the derivativ
dF@m#/dm @13#. For high values of the temperature we fin
that P(a,h)5d(a2ā)d(h2h̄), whereā and h̄ are the val-
ues of the local fields in the liquid phase. Lowering the te
perature we find first a dynamical transition at a certain te
peratureTD , where a nontrivial solution of the 1-step RS
equation appears, signaling the existence of many p
states. This solution becomes thermodynamically stable
low a static transition temperatureTs , where the maximum
of the free energy as a function ofm is atm51. Fork55 we
find that TD50.105m and Ts50.087m. The results fork
55 are shown in Figs. 12 and 13, and they are very sim
to those found for other lattice glass models@9,19,20#. Fig.
13 shows also the behavior of the parameterm as a function
of the temperature, which turns out to be very similar to t
one found for thep-spin model. As the complexity~that is
the logarithm of the number of metastable states! vanishes
below Ts , the finite entropy below the static temperatu
must be interpreted as an ‘‘intrastate’’ entropy, due to
rattling of the particles inside the cages.

V. CONCLUSIONS

In conclusion, we have studied a lattice glass model w
two body interactions. Monte Carlo simulations in three
mensions shows that the model, despite the presence
crystalline state, has no tendency to crystallize. This fea
allows the study of the supercooled regime without introd
1-7
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ing a mixture, as in many models of glass. The model ha
clear glassy behavior, and it is able to reproduce remarka
well the cage effect and the presence of two different ti
scales in the relaxation process.

A detailed analytical study in mean field on a rando
regular graph is presented. In this case, we find the scen
typical of p-spin glasses, recently reproduced by other m
els of glass. Further investigation is required to underst
whether in finite dimensions the static transition observed
mean field is still present.
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APPENDIX

In this section we report the details of the calculation
the self-consistency equation for the cavity method with
1-step RSB ansatz@13,14#. The high-density region is char
acterized by the existence of many pure states. The num
of pure states for a given value of the free energy is given

N~F !5expS~F !. ~A1!

We assume that within a given pure statea the local fields
ai

a andhi
a on different cavity sites are uncorrelated. The

fore the recursion Eq.~9a! continues to hold. However in thi
case we have to take into account the number of pure s
at a given value of the free energy and the possibility of le
crossings. We also assumeS(F) to be an extensive function

Our aim is to find the self-consistency equation for t
probability distribution of the local fieldsP(a,h). Let us
consider a sitei, connected tok cavity sitesj. In each pure
statea the local fields and the free energy shift are cor
lated, since they are both functions of the local fields in
neighbor sites in the statea aj

a andhj
a according to Eqs.~9a!

and ~10!. However the triplets (ai
a ,hi

a ,DFi
a) are indepen-

dent variables taken from a certain probability distributi
that we will call S(a,h,DF). Because of the recursion rela
tions, this probability distribution has to verify the followin
iteration relation:

S~a,h,DF !5E )
j 51

k

@daj dhj P~aj ,hj !#d~a2ai !

3d~h2hi !d~DF2DFi !. ~A2!

In order to determine the probability distribution of th
local fields P(a,h), we make the integration over all th
possible free energy shifts. This leads to

P~a,h!5E d~DF !S~a,h,DF !N~FN2DFN!

5E d~DF !S~a,h,DF !expFNSS FN2DFN

N D G .
~A3!
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Since we are interested only on the local minima with t
lowest free energy we can expand the exponential to the
order inDF5DFN /N

P~a,h!5CE d~DF !S~a,h,DF !exp~2bmDF !, ~A4!

where the parameterm is

m5
1

b

]S

] f
. ~A5!

We can now make the integration overd(DF). Thed func-
tion selects only the right value of the free energy shift giv
in Eq. ~10!:

P~a,h!5CE )
j 51

k

@daj dhj P~aj ,hj !#d~a2ai !d~h2hi !

3exp~2bmDFi !. ~A6!

We have thus obtained the self-consistency Eq.~14!.
The first-order expansion means that the number of p

states for a given value of the free energy is

N~F !5exp@m~F2Fre f!#, ~A7!

whereFre f is a reference free energy whose explicit value
completely irrelevant. This form of the density of states
the same found in the 1-step RSB formulation, wherem
P@0,1# is the usual 1-step RSB parameter. We finally co
clude that our formulation is equivalent to the 1-step R
ansatz.

In order to compute the free energy density we have
find the average values of the free energy shifts due to li
and sites addition

e2bmDF(1)
5E )

j 51

k11

@daj dhj P~aj ,hj !#S )
j 51

k11

~11ebaj !

1ebm (
p51

k11

)
j Þp

~11ebhj !D m

,

e2bmDF(2)
5E )

j 51

2

@daj dhj P~aj ,hj !#~11eba11eba2

1eb(h11h2)!m. ~A8!

We have then derived the expression for the free energy d
sity in the 1-step RSB given in Eq.~15!.
1-8
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